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Abstract--Results from scale-model experiments on the development of single layer folds from an initial 
perturbation of known shape are compared with infinitesimal amplitude theories for buckling of non-linear 
viscous materials. The experiments were performed in pure shear, using paraffin wax as an analogue for the 
power-law behaviour of common rocks. Effective viscosity ratios of 30 and 8 between layer and matrix were used, 
with power-law stress exponents of around 3.8 for the matrix and around 3 for the layer. The layer material shows 
strain softening behaviour. The variation of growth rate with wavelength (the range of wavelengths correspond- 
ing to the Fourier series representation for the non-periodic fold shape) was determined for each of the 
perturbation shapes and viscosity contrasts employed. These growth rate curves closely resemble those 
calculated from theory, but for short wavelengths and particularly for narrow initial pertuhations, observed 
growth rates tend to be higher than theoretical values. This may reflect the strain softening behaviour of the layer. 
Bonding of the matrix-layer interface appears to have a much greater effect on the growth rate curve than 
theoretically predicted, at least for the low to moderate viscosity ratios investigated. Experimental fold shapes 
are also compared directly with theoretical shapes. The best-fit between theory and observation occurs for values 
of the viscosity ratio and the layer stress exponent which are very close to the calibrated material properties, 
providing further experimental evidence that current fold theories are a good approximation to low but finite 
amplitude, single layer folding in non-linear materials. 

INTRODUCTION 

FOLOS are perhaps the commonest and most obvious 
manifestation of deformation in layered or foliated 
rocks. The study of fold development is, therefore, 
fundamental to understanding orogenesis. Folds are of 
three broad genetic types (e.g. Hudleston 1986): passive 
folds, where the layer has no mechanical significance 
and amplification is purely kinematic (e.g. fault-bend 
and fault-propagation folds, Suppe 1983, Suppe & Med- 
wedeff 1990; sheath and intrafolial fold development in 
shear zones, Cobbold & Quinquis 1980, fig. 11 from Van 
Den Driessche & Brun 1987), bending or flexural folds 
involving transverse forces acting on the layer (e.g. 
flexure of the lithosphere, Nadai 1963, pp. 131-146, 
Ranalli 1987, pp. 203-210) and buckle folds developed 
due to the mechanical instability of layered or aniso- 
tropic materials under compression (e.g. Biot 1961, 
Cobboid et al. 1971). The three folding mechanisms are 
not mutually exclusive: the growth of buckle folds, for 
example, is always accompanied by an additional kine- 
matic component of amplification (e.g. Biot 1961, Smith 
1975). 

This study considers folds developed as the result of 
buckling instability when a single layer embedded in a 
weaker matrix is shortened parallel to the layer. Such 
folding is directly related to the material properties of 
the rocks involved and several field studies of single 
layer fold geometry have been made with the specific 
aim of estimating the rock rheology during folding (e.g. 
Sherwin & Chapple 1968, Hudleston 1973b, Fletcher 
1974, Fletcher & Sherwin 1978, Hudleston & Hoist 
1984). These studies rely on theoretical results linking 
fold geometry, and in particular fold wavelength, to 

rheology. Two general approaches to the theory of 
buckle folding have been developed over the past 30 
years: an approximate, linearized analytical solution for 
very low fold amplitudes (infinitesimal fold theories e.g. 
Biot 1961, 1965b, Ramberg 1961) and numerical simu- 
lations at finite amplitude (e.g. Chapple 1968, Dieterich 
1969, Parrish 1973, Lewis & Williams 1978). Unfortu- 
nately, these theoretical results cannot be adequately 
tested by direct comparison with natural examples, as 
only the final fold shape can be measured, and more 
rarely, the amount of layer parallel shortening estimated 
(e.g. Sherwin & Chapple 1968, Hudleston & Hoist 
1984). As is more thoroughly discussed in Part I 
(Abbassi & Mancktelow 1992), the amplified fold geo- 
metry after finite strain may also be strongly influenced 
by the shape and position of initial irregularities in the 
layer, which, for natural folds, cannot be known with 
any accuracy. It will also depend on the material proper- 
ties of the matrix and layer (i.e. their constitutive flow 
laws and possible anisotropy), the degree and homogen- 
eity of bonding between matrix and layer, the thickness 
of the layer(s) and their separation, and the overall 
deformation history. Few of these parameters can be 
accurately determined for natural examples. 

More detailed investigation is possible using scale 
models which employ analogue materials to simulate 
rock behaviour (e.g. Hubbert 1937, Ramberg 1961). 
The results of a series of experiments, which use paraffin 
wax as an analogue for rock with power-law viscous 
rheology (cf. Cobbold 1975, Neurath & Smith 1982, 
Mancktelow 1988), are presented and compared with 
corresponding results from theories of buckle folding in 
non-linear materials (Fletcher 1974, 1977, Smith 1977, 
1979). Strictly speaking, the first-order approximations 
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Fig. 1. Geometry of single layer folding in pure shear. The layer is 
aligned parallel to the x 1 axis, with thickness h, with viscosity in the 
basic unperturbed flow/ZL and with a stress exponent hE; the corre- 
sponding values for the matrix are /ZM and riM, respectively. The 
boundaries of the block are shortened parallel to the layer at a rate ell. 

For constant volume, ez2 = -~11. 

inherent in these linearized theories are only valid at 
infinitesimal fold amplitudes. Obviously, measurements 
on scale models and natural folds must be made on folds 
of finite amplitude. An important aim of this study is, 
therefore, to consider the proposal by Chapple (1968) 
that the results of these infinitesimal theories can be 
reasonably extrapolated to low but finite amplitudes, 
where fold limb dips do not exceed 15-20 ° . The current 
series of experiments allow comparison within this range 
and can also consider deviations away from theoretical 
behaviour as amplitude increases. These experimental 
observations are dearly important if measurements of 
natural fold geometry are to be used, via the theoretical 
relations, to obtain rheological information. 

A very simple geometry is considered in the experi- 
ments, namely a single isolated layer within a homo- 
geneous matrix deformed under conditions of pure 
shear, with the shortening direction parallel to the layer 
(Fig. 1). This geometry is similar to that employed in 
many previous experiments employing both elastic and 
viscous materials (e.g. Biot et al. 1961, Ramberg 1961, 
1963, 1964a, Currie et al. 1962, Hudleston 1973a, Cob- 
bold 1975, Neurath & Smith 1982) and is not unrealistic, 
as approximately symmetric single layer folds are fairly 
common in nature (Sherwin & Chapple 1968, Cobbold 
1975, Hudleston & Hoist 1984). Earlier experimental 
studies concerned specifically with the verification of 
buckle fold theories using reportedly linear viscous 
materials were performed by Biot et al. (1961) and 
Hudleston (1973a). Neurath & Smith (1982) carried out 
experiments in non-linear materials, using paraffin wax, 
to study the amplification rates of perturbations with 
known initial wavelengths for both folding and boudi- 
nage instabilities. The approach employed here is simi- 
lar to that developed by Biot et al. (1961), where the 
development of a single isolated perturbation of known 
initial shape is monitored during progressive shortening 
of the layer. Such an approach allows the growth rate of 
a whole range of wavelengths (the Fourier components 

of the non-periodic fold shape developed from the initial 
irregularity) to be estimated from a single experiment. 

THEORIES ON THE INITIATION OF BUCKLE 
FOLDING 

Short summary of  published theoretical results 

The body of literature concerned with theoretical 
studies of buckle folding is very extensive (e.g. Biot 
1957, 1959a,b,c, 1961, 1963, 1964a,b, 1965a,b,c, Ram- 
berg 1959, 1960, 1961, 1963, 1964a,b, 1970a,b, 1981, 
Currie et al. 1962, Price 1967, Chapple 1968, 1969, 
Erzhanov & Egarov 1970, Treagus 1973, De Caprariis 
1974, Fletcher 1974, 1977, Smith 1975, 1977, 1979, 
Johnson 1977, Kerr 1986) and a comprehensive review 
will not be attempted here. Only those results which are 
relevant for direct comparison with the experiments are 
summarized and the reader should return to the original 
papers for a detailed development. 

The assumed initial geometry for the theoretical 
analysis of single layer buckle folding is as given in Fig. 1. 
The materials are taken to be non-linear viscous, with 
effective viscosity/a and stress exponent n defined as in 
Fig. 2, following Smith (1977, 1979, fig. 2). As discussed 
by, among others, Biot (1961, 1965b), Ramberg (1961), 
Fletcher (1974) and Smith (1975), an initial sinusoidal 
deflection y(x) of the layer, as represented by 

y(x) = Yo cos Ix, 

where I is the wavenumber, l = 2nt/L, and L the wave- 
length, will increase exponentially with strain, such that 
after a logarithmic strain e parallel to the layer, the 
deflection y(x,e) is given by 

y(x,e) = Yo exp[-(1 + q)e] cos Ix. 

The negative sign in the exponent arises from the con- 
vention that shortening strain is negative. Layer parallel 
shortening is neglected in this simplified analysis, but 
will be discussed in some detail below (and included in a 
numerical solution) when finite strain effects are con- 

slope - 2~n~... ._." 
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Fig. 2. Definition of the effective viscosity ~ for the basic flow at rate 
~lbt (¢f. Fig. 1) and of the effective viscosity ~n for a perturbation in the 
deviatoric normal stress, determined for a general non-linear viscous 
material from a plot of the deviatoric normal stress parallel to the x 1 
axis (o~1) vs the corresponding longitudinal strain parallel to the same 
axis (e11). The effective power-law stress exponent n is given by the 

ratio #/7,, (Smith 1979). 
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sidered. The first term in the exponent (i.e. 1) describes 
the kinematic amplification of the perturbation during 
shortening. The second term q is the non-dimensional 
dynamic growth rate of the perturbation due to mechan- 
ical (buckling) instability (Smith 1977, Neurath & Smith 
1982). The dynamic growth rate will be a function of the 
ratio of the effective viscosities of the layer/zL and matrix 

/~L m - -  
ArM' 

the power-law stress exponent of the layer nL and of the 
matrix riM, and the ratio of the wavelength L to the 
thickness of the layer h, which is expressed as the 
normalized wavenumber 

2~h 
s = h l =  

L 

All these quantities (m, nL, n M and s) are non- 
dimensional; it follows that any expression for the dy- 
namic growth rate which utilizes only these quantities 
must also be non-dimensional. 

Fletcher (1974) and independently Smith (1979) de- 
rived an expression for the dynamic growth rate of folds 
within a thick plate in the general case of non-linear 
materials, with complete adherence between the layer 
and matrix, which is given by: 

2n+ 1) 
q 

~ Q2 _ - 1  + +V~nL 1 
t 

X [ ( 1  "4- Q)2 exp(as) - (1 - Q)2 exp(-as)]]  

2 sin(fls) J 
(1) 

where a = X/i~L, fl = X/ l - -  1/nL and Q = 1/m 
X/nLlnM. Plots derived from this equation for the maxi- 
mum growth rate and the 'dominant wavelength' corre- 
sponding to this growth rate, over the range of material 
properties of interest in the current experiments, are 
presented in Fig. 3. 

Effect of  non-linear viscosity on single layer buckle 
folding 

For an incompressible, Newtonian linear viscous 
material 

tT;j = 2/~kij, 

where o[j is the deviatoric stress, kij is the strain rate, and 
/~ is a material parameter, the viscosity, dependent on 
temperature and pressure but not on tr~j and kq (e.g. 
Biot 1965b, p. 376). Formally, non-linear (or non- 
Newtonian, or effective) viscosity is defined as 

= = f ( o ; j )  = f*(k , j )  
eij 

but one cannot determine the viscosity of a non-linear 
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Fig. 3. (a) Dominant wavelength (wavelength with the fastest growth 
rate) as a function of viscosity ratio, for linear viscous and non-linear 
behaviour, with stress exponents n covering the range of interest for 
the experimental analogue materials. Plots are calculated using 
equation (1), as derived by Fletcher (1974) and Smith (1979). 
(b) Maximum dynamic growth rate, corresponding to dominant wave- 
length in (a) vs viscosity ratio. The total growth rate is obtained by 

adding a value of 1 for the additional kinematic component. 

material, only the viscosity at a given stress (or strain 
rate) (Fig. 2) (e.g. Ranalli 1987, p. 79). The flow law 
relating deviatoric stress to strain rate reflects the physi- 
cal properties of the material, and must be valid under 
any co-ordinate transformation. It is natural, therefore, 
to express it in terms of invariants, either of stress (e.g. 
Fletcher 1974, Schmeling 1987, Ranalli 1987, pp. 76--79) 
or strain rate (e.g. Smith 1977). As discussed by these 
authors, an important characteristic of non-linear visco- 
sity, when considered in full tensorial form, is that a 
homogeneous isotropic material flowing due to some 
basic stress state will appear anisotropic to an additional 
small secondary or perturbation flow (see also Biot 
1965b, pp. 89-95, Latham 1985). For small pertur- 
bations in deviatoric stress components which are 
already small (or zero) in the basic stress state, the 
change in the second stress invariant, and thus in the 
effective viscosity, will be negligible, so that the viscosity 
'seen' by the stress perturbation is approximately linear. 
Perturbations in deviatoric stress components which are 
large in the original basic state will affect the second 
invariant (and thus the effective viscosity) to the full, 
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and the stress perturbation will see a non-linear viscosity 
with r /=  p/n (Fig. 2). For a pure shear basic state as in 
Fig. 1, the effective perturbation viscosity for shear 
stress r/s will be approximately linear and equal to/a, the 
viscosity of the basic flow, whereas the effective pertur- 
bation viscosity for normal stress r/n is non-linear and 
given by/a/n. Thus r/s/r/,~ = n, and for strain rate softening 
materials such as paraffin (and rocks), the material is less 
viscous by a factor n for perturbations in normal stress 
than in shear stress. This has important implications for 
buckle folding, as it is exactly the opposite of the 
geometric anisotropy introduced due to the more vis- 
cous single layer lying parallel to the xl axis in Fig. 1 
(Fletcher 1974, 1977, Smith 1977, 1979). 

To discuss this effect of apparent or induced aniso- 
tropy in non-linear materials on single layer buckle 
folding, a simplified form of equation (1) will suffice. 
Much of the complexity of equation (1) is the result of 
secondary effects, due to the bending of a thick layer and 
to adherence between layer and matrix. These effects 
become significant only at low viscosity contrast and 
correspondingly short wavelengths (see below). If only 
the leading terms in the normalized wavenumber s are 
retained, the equation reduces to: 

nL q-~  
n L 1 t- s2 

ms  12 

/'/L 
~//M 1-~ /-/L S2 

V~nM s nt. 12 

(2) 

(from Fletcher 1974, Smith 1979) and corresponds to the 
thin-plate approximation for perfect slip presented by 
Biot (1961). As demonstrated by Biot (1965b, pp. 418- 
419), who also derived a more exact thick-plate solution, 
this approximation is perfectly adequate when the visco- 
sity ratio between layer and matrix is high (Fig. 4). The 
approximation is less acceptable for low viscosity ratios 
(<100), where the more exact, thick-plate solution 
always gives a lower growth rate of the fold instability at 
short wavelengths, with the result that the maximum 
growth rate occurs at longer wavelengths than for the 
thin-plate approximation. 

As noted by Fletcher (1974) and Smith (1979), 
equation (2) can be obtained by a simple modification of 
the linear viscous result of Biot (1961). The introduction 
of non-linearity in itself does not change the basic 
mechanism of buckle folding (except perhaps for ex- 
treme non-linearity where nL > 20, which is not relevant 
to the material properties of our experiments, cf. Smith 
1979). The denominator of equation (2) describes the 
combined viscous resistance of the matrix (the first term) 
and the layer (second term) to folding. It can be ob- 
tained from the Biot (1961) equation by substituting the 
appropriate non-linear perturbation viscosities r/for the 
linear viscositiesp in the original derivation (Biot 1965b, 
pp. 389-391, Fletcher 1974, Smith 1979). The pertur- 
bation strain in the matrix involves a mixture of stretch 

and shear: the appropriate viscosity is, therefore, the 
geometric mean of the viscosities for stretch and shear 
(Biot 1965b p. 211), namely 

~ = /~M 

For the high viscosity, long wavelength conditions 
appropriate to equation (2), fibre strains are developed 
within the layer (i.e a coaxial strain history with the 
geometry of tangential longitudinal strain, cf. fig. 7-63 
from Ramsay 1967). The effective perturbation viscosity 
for normal stresses alone (r/[ = ,UL/nL) is, therefore, the 
appropriate value for the layer. The final result, as given 
by equation (2), demonstrates the most important 
effects of non-linear material behaviour on buckle fold- 
ing. If the power-law stress exponent is >1 (the usual 
case of strain rate softening materials), then the fold 
growth rate is always increased (Fig. 3b). Because of the 
induced anisotropy (which leads to the ~ term), the 
influence of the power-law exponent is greater for the 
layer than for the matrix. 

The dependence of growth rate on wavelength can be 
seen as a competition between the layer and matrix: 
bending strains within the layer increase with decreasing 
radius of curvature and hence with decreasing wave- 
length; the width of the zone of heterogeneous contact 
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Fig. 4. Comparison of growth rate curves for the more exact thick- 
plate solution, given by equation (1) in text, and for a thin-plate 
approximation given by the much simpler equation (2), for various 
values of the viscosity ratio and for linear viscous bchaviour of layer 
and matrix. For viscosity ratios greater than c a  100, the difference 

between thin- and thick-plate solutions is negligible. 
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strain in the adjacent matrix increases with increasing 
wavelength (e.g. Ramberg 1961). The relative rheologi- 
cal properties of layer and matrix will thus determine 
which wavelength represents the best compromise be- 
tween the two competing effects. This will be the wave- 
length of fastest growth rate, or the so-called dominant 
wavelength (e.g. Blot 1961). For a strain rate softening 
rheology (n > 1), the effective perturbation viscosity for 
stretches in the layer due to bending is lower than in a 
linear material with the same viscosity for the basic flow, 
whereas the effect on the matrix (where both stretch and 
shear are involved) is less marked. Since the bending 
resistance of the layer to folding is reduced more than 
the resistance of the matrix, the dominant wavelength is 
shorter (Fig. 3a). In summary, the effect of non-linearity 
in rocks (and in paraffin) is greater for the layer than for 
the matrix, and results in an overall higher growth for 
buckle folding and a shorter dominant wavelength. 

Effect of layer-matrix bonding 

Blot (1959) explicitly considered the effect of the 
degree of bonding between layer and matrix in linear 
viscous materials and found that, for the thin-plate 
approximation, the growth rate is given by: 

1 
, ( 3 )  

s 2 q =  1 + + D  

where D = 0 for perfect slip and 

1 
D -  

4 _ 
s 

for perfect adherence (no slip). The analysis was ex- 
tended to the more exact thick-plate solution for the full 
range of possible slip conditions by Smith (1975, p. 
1606)and his equation (41) for the growth rate of folds in 
linear viscous materials is graphed in Fig. 5 for the two 
extreme possibilities of no slip and perfect slip. It is 
immediately obvious that the distinction between slip 
and no-slip conditions becomes insignificant for high 
viscosity contrasts and that the effect of adherence is 
similar to that for a thick plate: namely, it decreases the 
growth rate at shorter wavelengths and shifts the maxi- 
mum growth rate to slightly longer wavelengths. 

THE AMPLIFICATION OF AN ISOLATED 
INITIAL PERTURBATION 

Aims and limitations 

Two approaches to the study of the amplification of 
initial irregularities in a single layer into finite amplitude 
folds are developed here. Both approaches rely on the 
fundamental assumption that fold shapes can be ade- 
quately represented by a Fourier series of sinusoidal 
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Fig• 5. Comparison of growth rate curves for the two extremes of 
perfect slip and perfect adherence across the interface between matrix 
and layer, for different values of the viscosity ratio and for linear 
viscous behaviour of layer and matrix, using the equation of Smith 
(1975). The difference between the two curves is only significant at low 
viscosity ratios (<ca 100), where adherence reduces the maximum 

growth rate and shifts it very slightly towards longer wavelengths• 

components (see Appendix), and that, to a first-order 
approximation appropriate for low limb dips during fold 
initiation, individual Fourier components amplify inde- 
pendently of one another. The fold shape at any stage 
can be reconstructed by superposition of the amplified 
sinusoidal components. The two related approaches are 
as follows• 

(1) To study the growth rates of individual Fourier 
components• The experimentally determined variation 
in growth rate with wavelength can then be compared to 
theoretical curves calculated using equation (1). 

(2) To study the degree of fit between the theoretical 
fold shape obtained by amplification of the known initial 
shape with the observed shape during fold development. 
A least-squares method can be used to return the pre- 
dicted material properties which best reproduce the 
observed shape• These predicted material properties 
can be compared with the calibrated values for the 
model materials. The quality of the fit between the 
theoretical and observed fold shape tests whether the 
results of infinitesimal amplitude fold theories may be 
usefully extrapolated to the amplitudes at which fold 
shapes can be accurately measured. The fit between 
predicted and measured material properties also tests 
the potential application of infinitesimal fold theories for 
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extracting rheological information from the shape of 
finite amplitude natural folds. 

Basic theory 

The method employed here closely follows that 
suggested by Biot et al. (1961) for buckle folding in linear 
elastic and linear viscous materials. The method intro- 
duces an initial perturbation of known mathematical 
form, and follows its development with increasing bulk 
shortening parallel to the layer. The geometry chosen is 
that of a bell-shaped curve: 

b 
y(x) = ~ (4) 

which can be written as a Fourier integral: 

(5) 

As discussed above, a single, perfectly sinusoidal initial 
perturbation of the form y(x) = Y0 cos Ix will be ampli- 
fied, as the result of a finite shortening e parallel to the 
layer, to a form given by y(x,e) = Yo exp[-(1  + q)e] 
cos/x.  For an initial deflection which is not perfectly 
sinusoidal, but localized, the problem can be 
approached using the principle of superposition, where 
the initial deflection is represented as the superposition 
of cosine functions by a Fourier integral. For any given 
wavenumber, each sinusoidal component under the in- 
tegral sign is multiplied by the amplification factor 
e -O+q)~. The deflection y(x,e) after strain • is then 
obtained by summation (m_ integration) of all the ampli- 
fied components, namely 

fo y(x,e) = ab e - a t - ( l + q ) e  Cos/xd/. 

This expression can be rewritten in a non-dimensional 
form using the normalized wavenumber s defined above: 

y(x,e) _ a e -as/h-(l+q)e cos ds. (6) 
b h 0 

Numerical integration and comparison with previous 
results 

An efficient method for numerical computation of 
integrals of this type was first proposed by Filon (1928) 
and discussed in the appendix of Biot et al. (1961). This 
method is also used here, and has been checked against 
the slower but more traditional method of Simpson's 
rule (using routine QSIMP from Press etal. 1986) for the 
simple case of linear material behaviour. The size of the 
discrete steps for the numerical approximation was 
chosen such that the normalized y(x,e) is accurate to 
within 10 -3 , which is more than sufficient for compari- 
son with the experimental results. Results of the inte- 

gration (which completes within seconds on an Apple 
Macintosh II personal computer) are identical to those 
published by Biot et al. (1961, fig. 3). As can be seen 
from Fig. 6, even for a very large and completely 
unrealistic total amplification (e.g. at e = 0.25, s e e  

below), the fold train shape still diminishes quite rapidly 
in amplitude away from the amplitude maximum posi- 
tion at the origin, and the influence of the initial isolated 
perturbation is dearly discernible. 

Limitations due to finite amplitude effects 

The infinitesimal-amplitude treatment cannot be 
directly extrapolated to large amplitudes, as three 
assumptions restrict it to very low dip (Chapple 1968): 

(1) the boundary between the layer and the medium is 
treated as a plane when calculating the stress distri- 
bution in the medium; 

(2) if 0 is the dip of the layer, it is assumed that sin 0 = 
tan 0 = 0 at all points along the layer; 

(3) and the distinction between arc length along the 
layer and distance parallel to the co-ordinate axis (i.e. 
the compression axis) is neglected, which implies that 
the strain rate in the layer (~1L1) is identical to the strain 
rate in the adjacent matrix ( ~ )  and to that applied at the 
boundaries (kzz) (cf. Fig. 1). 

The approach of Biot et al. (1961), in which the initial 
growth rate as a function of wavenumber is maintained 
to finite strains (up to e = 0.25, Fig. 6), results in several 
major inconsistencies due to the neglect of these restric- 
tions implicit in the infinitesimal-amplitude treatment. 
These will now be discussed in turn. 

(a) The folds develop as a sum of sinusoidal Fourier 
components which increase in amplitude relative to 
fixed co-ordinates parallel to the compression axis (the x 
axis in our equations). This is clearly unrealistic as the 
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Fig. 6. Fold shapes developed from an initial peffurbation with the 
same parameters as Blot  et aL (1961, fig. 3). Dimensions are normal- 
ized against layer thickness h. For the initial bell-shaped perturbation, 
a = 11 and b = 1. The maximum amplitude (at x = 0) is always 
normalized to 1, as in the original paper by Biot et al. (1961). The 
viscosity ratio between matrix and layer is 1000 and the materials are 
assumed to be linear viscous. At such high viscosity ratios, the 
equation of Biot (1961), which employs a thin-plate approximation 
and a slipping layer-matrix interface, is effectively identical to the 
more complex equation (1) of Fletcher (1974) and Smith (1979), which 
is a more exact thick-plate solution for a non-slipping interface (see 
Figs. 4 and 5). The fold shapes derived from the two alternative 

equations are indistinguishable. 
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strains of c a  0.08 (~7.7% shortening), which corresponds to a limb dip 

of c a  20 ° . 

kinematic component of the bulk deformation will pro- 
duce a progressive shortening in the x-direction. 

(b) The maintenance of constant growth rates to such 
high values of total shortening results in impossibly large 
amplification of the fold components: in the case recal- 
culated from Biot et al. (1961) as presented in Fig. 6, the 
amplification of the central antiform would be of the 
order of 10 TM at e = 0.25. To obtain such amplification 
without near vertical limb dips and an enormous in- 
crease in the arc length of the layer demands that the 
initial irregularities be less than -10  -13 of the layer 
thickness. For a 1 cm thick layer, this would require that 
all such initial irregularities were several orders of mag- 
nitude less than the size of individual atoms. It is clear, 
then, that the initial growth rates cannot be maintained 
to such large total amplifications and must decrease 
dramatically as folds grow (Fig. 7) (Neurath & Smith 
1982, Abbassi & Mancktelow 1990). This change 
appears to occur at around 15-20 ° limb dip (Chapple 
1968, Hudleston 1973a, Abbassi & Mancktelow 1992). 

(c) The method also requires that the principle of 
superposition applies. Each Fourier component is 
amplified at a rate dependent on its wavenumber and 
independent of any other component; the final form of 
the wave train is found from the addition of these 
amplified components. Chapple (1968) found in his 
finite amplitude simulations that this assumption only 
held for limb dips <15-20 ° , which is confirmed by the 
current analogue experiments (see Fig. 7). 

The approach of Biot et al. (1961) to the development 
of an isolated perturbation into a fold train with increas- 
ing shortening clearly cannot be pursued to such high 
finite strains as in their original paper. It may be a 
reasonable approximation for fold limb dips less than 
about 15-20 ° (e.g. Chapple 1968). Even within this 
range, however, the effect of layer parallel shortening 
should be considered (e.g. Fletcher 1974). The normal- 
ized wavenumber is s = lh, but now both the layer 

thickness h and the wavenumber l vary during the 
folding history. The approach used here is to divide 
the finite strain into a series of discrete small steps 
(i = 1 . . . n, with a value of Aei = --0.02) and to sum the 
growth rate over this series. The change in layer thick- 
ness with bulk shortening is known directly from 
measurements for each experiment (cf. Part I, Abbassi 
& Mancktelow 1992), and can be represented as a 
smooth spline curve through the data points. This gives 
the value of h i for each value of the bulk strain e. The 
value of the wavenumber li for each value of e is given by 
li = lo exp(-e) (remembering that e is negative for 
shortening). For each step, the value si = l~i  can then be 
substituted in equation (1) to obtain qi. The  value qe (the 
total dynamic amplification at strain e) is then given by 
the series summation E'i~l qiAei and this value can be 
directly substituted into equation (6). Equation (6) 
returns the y co-ordinates of the fold shape relative to x 
co-ordinates defined in the undeformed initial state. In 
the original infinitesimal treatment, the distinction be- 
tween the x co-ordinates in deformed and undeformed 
states was insignificant. For an extension to finite total 
shortening, however, the x co-ordinates must be 
shortened by the appropriate amount (corresponding to 
e) to allow direct comparison with the photographed and 
digitized experimental folds. 

EXPERIMENTAL METHOD 

Material properties 

Full details of the experimental conditions, methods 
and material calibrations are given in Part I (Abbassi & 
Mancktelow 1992). For the selected experimental con- 
ditions, the paraffin waxes used as modelling materials 
have an elastic-non-linear viscous rheology with a 
power-law relationship between flow stress and strain 
rate. The wax of melting range 46-48°C employed as the 
matrix flows in steady-state, with a stress exponent n of 
around 3.8 (Part I, fig. 2). The stiffer wax of melting 
range 58-60°C used to construct the single layers is 
strongly work softening under the same conditions, with 
a strain sensitivity r ~ 3 (Part I, fig. 3), and a stress 
exponent of about 3 (Part I, fig. 4). Neurath & Smith 
(1982) have discussed the possible influence of strain 
softening on single layer buckling instability. The para- 
meter e*, which they introduced as a measure of the 
strain softening behaviour, is equivalent to 1/x from the 
current calibrations. Neurath & Smith (1982, p. 226) 
conclude that, to a first-order approximation, the com- 
bined effect of strain and strain rate softening can be 
characterized by defining an effective stress exponent 
neff, such that 

1 1 K 
- -  ( 7 )  

nef f n 2q 

(allowing for the plane strain geometry of our cali- 
bration experiments; the calibrations of Neurath & 

SG 1 4 : 1 ~ G  
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Smith 1982, were performed with an axial shortening 
geometry). The effective exponent neff will be depend- 
ent on the growth rate q of the particular wavelength 
component. With the calibrated values obtained for the 
58--60°C melting range wax, the effective exponent neff 
would be 3.3 for q = 50, 5.5 for q = 10, 30 for q = 5, 
infinite for q = 4.5 and negative for q < 4.5! The 
relationship (7) is not very useful for direct application 
to the numerical simulation of fold amplification, as 
outlined above, since q = f(nL) (equation 1) but now, as 
the result of strain softening, the effective nL should 
itself be a function of q. Qualitatively, however, 
equation (7) indicates that strain softening of the layer 
during buckle folding may result in an effective stress 
exponent which is higher than the directly calibrated 
value. The effect should be most marked for folds (or the 
wavelength components of fold shapes) with slow 
growth rates. This will become important below in the 
discussion of growth rates and material rheology as 
estimated from the experimental fold shapes. 

As discussed above, for non-linear materials there is 
no single viscosity, only an effective viscosity for a 
particular basic state of stress or strain rate. All experi- 
ments and calibrations were performed under the same 
conditions (with constant strain rate of 3 x 10 -5 s -1) 
which represent this basic state. Because the layer strain 
softens, however, the viscosity ratio between layer and 
matrix also decreases with increasing strain. The maxi- 
mum value corresponds to the ratio between the yield 
stress of the stiffer layer and the steady state flow stress 
of the matrix and is approximately 30:1 (fig. 1 from Part 
I, Abbassi & Mancktelow 1992). One experimental run 
was also performed in which the layer was constructed of 
a mixture of the two wax types, to obtain a lower ratio of 
around 8" 1. 

Initial geometry 

An attempt was made to introduce initial isolated 
perturbations which resembled the theoretical bell- 
shaped curve as closely as possible. Moulds were pro- 
duced on a numerically driven lathe where the math- 
ematical shape could be predetermined. The amplitude 
of the perturbation (i.e. b) was always 2 mm such that, 
for a layer thickness of 4 mm, the initial normalized 
amplitude was 0.5. Three different moulds with a = 
5.09, 10.19 and 20.37 mm gave initial average wave- 
lengths of 8, 16 and 32 times layer thickness respectively 
and corresponding initial limb dips of 12 °, 5 ° and 3 ° (see 
Part I, Abbassi & Mancktelow 1992). In manufacturing 
individual models, slight inaccuracies were unavoidable 
and the actual values of a and b for the models, rather 
than the moulds, were always determined using a least- 
squares best-fit of the equation for each side of the 
perturbation independently. These calibrated values 
were then used as the input for the numerical simu- 
lations. Duplicate experiments of each perturbation 
shape were performed to check reproducibility. 

To analyse fold shape development, the median line 
of the initial and deformed layer was digitized and 

mathematically smoothed using a tight spline routine to 
minimize the scatter, of the order of 0.05 mm, intro- 
duced by manual digitizing (Panozzo 1988). 

COMPARISON BETWEEN EXPERIMENT AND 
THEORY 

Growth rates 

The growth rates of particular wavelength (or more 
conveniently wavenumber) components are determined 
in three steps. 

(1) The coefficients of the Fourier transform are 
calculated for the fold shape at different stages in the 
shortening history. 

(2) The growth-rates for each of the cosine com- 
ponents are then determined by least-squares linear 
regression of a plot of the natural logarithm of the cosine 
coefficient vs the bulk shortening parallel to the layer 
(as logarithmic strain). These plots are only linear at low 
fold amplitudes corresponding to low limb dips (<ca 
20 °, Fig. 7). For higher limb dips, the growth rate 
progressively decreases (Fig. 7) and the independence of 
individual wavelength components is not maintained 
(Chapple 1968). The quality of the growth-rate data 
diminishes as the amplitude of the component in the 
initial introduced perturbation decreases; comparisons 
are then being made between very small quantities with 
large uncertainties. For each initial perturbation shape, 
there is a lower limit to the wavelengths on which 
reliable growth-rate data can be obtained. 

(3) Finally, the growth-rate data for left and right sides 
of the fold strain and for duplicate experiments are 
averaged, and the average value (with error bars corre- 
sponding to the standard error) is plotted against the 
inverse of normalized wavelength for comparison with 
theoretical growth curves (equation 1 above). 

The results for the series of experiments with a visco- 
sity contrast of 30:1 and an easy-slip interface between 
matrix and layer are presented in Fig. 8. Considering the 
inaccuracies and assumptions in the several steps leading 
to the derivation of these plots, the fit between experi- 
ment and theory is quite good. For the narrow (Pert A) 
and intermediate (Pert B) width perturbations, the 
material properties corresponding to the best-fit theor- 
etical curves are very close to the calibrated values for 
the materials employed. For the broadest initial pertur- 
bation (Pert C), the best fit occurs for a viscosity ratio 
(~47) which is somewhat higher than the calibrated 
value of 30. 

The major discrepancy between the shape of the 
experimentally estimated growth curves and the theor- 
etical curves occurs at short wavelengths (i.e. large layer 
thickness/wavelength, Fig. 8), as is seen most clearly as 
the initial perturbation becomes narrower and these 
short wavelength components become more significant 
in the overall fold shape (Figs. 8a & b). The growth rate 
of the short wavelengths is consistently higher than 
predicted theoretically. It could be that this observation 
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Fig. 8. Results of growth rate analysis for separate Fourier cosine 
coefficients from experiments with differing width of the initial pertur- 
bation but the same material properties, with a viscosity ratio of ca 30. 
Growth rates are plotted against the inverse normalized wavelength 
(thickness/wavelength = 2~s, where s is the normalized wavenumber). 
Each plotted point represents the average of all determinations (left 
and right sides of the fold train giving two values per experiment, four 
values for duplicate runs) and error bars represent the standard errors. 
In each case, the theoretical curve is a least-squares best-fit for a fixed 
n M exponent in the matrix of 3.8. (a) Results for the narrowest 
perturbation of initial average wavelength 8 times layer thickness. 
Duplicate experiments gave a total of four values which are averaged 
for each plotted point. The theoretical curve is a best-fit to the first six 
data points only. (b) Results for the intermediate perturbation of 
initial average wavelength 16 times layer thickness. The theoretical 
curve is a best-fit to the first six data points only. (c) Results for the 
broadest perturbation of initial average wavelength 32 times layer 
thickness. Duplicate experiments gave a total of four values which are 
averaged for each plotted point. The theoretical curve is a best-fit to all 
data points, with a standard deviation of 3.9. Note that at layer 
thickness/wavelength values greater than 0.15, the error bars are 
generally larger than in (a) and (b). This reflects the very low values of 
these short wavelength components in the original broad perturbation. 
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Fig. 9. Results of growth rate analysis for separate Fourier cosine 
coefficients from the experiment with a welded layer-matrix interface. 
Initial perturbation geometry and material properties are the same as 
for Pert B inFig. 8. (a) Cosine coefficients of the discrete Fourier series 
for the right-hand side of the central antiform with increasing logarith- 
mic strain e. (b) Growth rate vs inverse normalized wavelength 
determined from the cosine coefficients for both sides of the central 
antiform. The error bars represent the standard error for the two 
values. The solid curve is a best-fit (in the range 0 < layer thickness/ 
wavelength <- 0.2) theoretical growth rate curve, taking the calibrated 
value of 3.8 for the stress exponent of the matrix, and using equation 
(1) from Fletcher (1974). (c) Comparison of growth rate curves for 
experiments which were identical except for the degree of bonding of 
the layer-matrix interface. The growth rate curve for the unwelded 

experiment is that for Pert B in Fig. 8(b). 
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Fig. 10. Results of the best-fit shape analysis for the right side of the fold in experiment Pert A, with an initial average 
wavelength to the perturbation of 8 times layer thickness. (a) Digitized initial shape (points) and best-fit bell-shaped curve 
(solid line). The degree of fit is so good that digitized points are largely obscured by the bell curve, even though there is 
marked vertical exaggeration. (b) Digitized fold shape (points) and best-fit theoretical shape (line) at 6% shortening. 
(c) Mean residual difference in the Y co-ordinate (in ram) between theoretical prediction and the observed experimental 
shape as a function of the viscosity ratio used in the numerical calculation. The minimum value is tightly constrained around 
30, which is also the calibrated value. (d) Mean residual difference in the Y co-ordinate (in ram) between theoretical 
prediction and the observed experimental shape as a function of the stress exponent for the layer used in the numerical 
calculation. The minimum value is tightly constrained at around 6. The calibrated value is c a  3, but if the effect of strain 
softening bchaviour is considered, a higher effective stress exponent is predicted theoretically (Neurath & Smith ]982). 

is due to the strain softening properties of the stiff layer. 
As discussed above, Neurath & Smith (1982) suggest 
that the behaviour of strain softening materials can be 
approximated by invoking an effective stress exponent 
neff, which is dependent both on the rate of strain 
softening and on the growth rate itself. This consider- 
ably complicates the determination of a theoretical 
growth curve such as in Fig. 8, as each Fourier com- 
ponent would have a different value of n(layer) corre- 
sponding to its specific growth rate. In particular, the neff 
value should increase for components with a slower 
growth rate, which in turn will tend to increase the 
growth rate itself, such that the growth rate should not 
decrease so rapidly towards shorter wavelengths. This is 
exactly what is observed in Fig. 8 for the strongly strain 

softening stiff layer. Clearly this effect can only be fully 
considered when similar experiments are available for 
materials which flow in steady state (i.e. no strain 
softening). 

The results of a similar Fourier analysis of the growth 
rate of the experiment with a welded interface between 
layer and matrix are presented in Fig. 9. The effect of 
bonding is quite dramatic and results in a growth curve 
more consistent with a layer to matrix viscosity ratio of 
around 9-10 than with the calibrated value of 30. As is 
seen from the comparison between welded and 
unwelded experiments in Fig. 9(c), the growth rate for 
all wavelength components is lowered and the effect of 
bonding is much more dramatic than that predicted by 
the linear viscous infinitesimal theories as presented in 
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around 6, which is the same value obtained in Fig. 10(d). 

Fig. 5. As discussed in Part I (Abbassi & Mancktelow 
1992), there is some risk that the construction procedure 
for the welded model may have altered the material 
properties of the matrix adjacent to the layer (by dif- 
fusion or by change in microstructure due to recrystalli- 
zation) and further studies with different analogue 
materials are necessary to confirm this dramatic influ- 
ence of the degree of layer-matrix bonding on folding 
with low to moderate viscosity ratios. 

Fold shape comparison 

As introduced above, the predicted deflection of the 
layer y is a function of x, the logarithmic strain e and the 
growth rate q, where q is itself a function of the viscosity 
ratio m and the power law exponents of the layer and 
matrix nL and n M respectively. The method employed 
calculates the mean residual difference in the y co- 
ordinates, i.e. 

[Ymeasured -- Ycalculated] 2/number of data , 
x=0 

where Tis the length of the digitized layer. The two sides 
of the perturbation about the origin x = 0 are treated 
independently and the perturbation is not assumed to be 
perfectly symmetric. Plots of this sum of residuals vs m 
and n L are given in Figs. 10-12 for each of the initial 
perturbation shapes with calibrated m = 30 and in Fig. 
13 for the experiment with m = 8. The power-law 
exponent of the matrix nM has only limited influence on 
the growth rate q (Fletcher 1974) and is, therefore, not 
well constrained in the analysis; a value of 3.8 was 
assumed, as determined by the calibration experiments. 

The least difference between observed and nu- 
merically predicted shape occurs for values of the 
material properties m and n L which are very close to the 
experimentally calibrated values. This demonstrates 
that the theoretical approach outlined by Biot et al. 
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wavelength to the perturbation of 32 times layer thickness. (a) Best-fit bell-shaped curve to the introduced perturbation. For 
the degree of exaggeration in Y, the fit is so good that the digitized experimental points are lost in the thickness of the line. 
(b) Digitized fold shape (points) and best-fit theoretical shape (line) at 6% shortening. (c) Mean residual difference in the Y 
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calibrated value of 30. (d) Mean residual difference in the Y co-ordinate between theoretical prediction and the observed 
experimental shape as a function of the stress exponent for the layer used in the numerical calculation. The minimum value 
is unconstrained above a value of ca 6. This lack of constraint reflects the influence of the initial perturbation shape (see text 

and Fig. 14). 

(1961), using the growth rate equation (1) derived by 
Fletcher (1974) and Smith (1979), is remarkably  good at 
predicting the material  propert ies f rom the fold shape,  
provided that the initial per turbat ion shape is known. As 
can be seen f rom Figs. 10-13, it is the viscosity contrast 
which has the strongest influence on the fold shape,  
followed by the power-law exponent  of the layer. The 
value of n L is best constrained for high viscosity contrast 
and narrow initial perturbations.  The reason for this is 
clear from Fig. 14. At  long wavelengths (i.e. low values 
of  layer thickness/wavelength in Fig. 14), the effect of tie 
on the growth rate is negligible, especially for larger 
values of  nL; but it becomes quite significant at shorter 
wavelengths (Fig. 14a). The broad perturbat ion Pert  C, 
with average initial wavelength/thickness of 32, has most  

of  its initial Fourier  components  of significant amplitude 
in the range where n L has negligible effect. The value of 
tl E will, therefore,  have little effect on the fold shape 
developed from such a perturbat ion and n L will be 
poorly constrained by the best-fit shape analysis (Fig. 
12d). In contrast,  the narrow perturbat ion Pert A has 
many of its components  in the range of wavelengths 
where the n L value exerts a significant effect on the 
growth rate of individual components .  This will be 
reflected in the fold shape and more  tightly constrain the 
possible values of n L. For lower viscosity contrast,  the 
wavelength with maximum growth rate is shorter,  mov- 
ing the maximum towards the right in a plot such as Fig. 
14(a), and increasing the range of wavelengths where n L 
has little influence. In experiments  with low viscosity 
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Fig. 13. Results of the best-fit shape analysis for the right side of the fold for the experiment in which the viscosity ratio 
between layer and matrix was only ca 8. (a) Digitized initial shape (points) and best-fit bell-shaped curve (solid line). 
(b) Digitized fold shape (points) and best-fit theoretical shape (line) at 10% shortening. (c) Mean residual difference in the 
Yco-ordinate between theoretical prediction and the observed experimental shape as a function of the viscosity ratio used in 
the numerical calculation. The minimum value is well constrained at around 6.5, which is reasonably close to the calibrated 
value of ca 8. (d) Mean residual difference in the Y co-ordinate between theoretical prediction and the observed 
experimental shape as a function of the stress exponent for the layer used in the numerical calculation. The minimum value 

is very weakly constrained around a value of ca 6. 

contrast, n L will be more poorly constrained than in 
experiments with high viscosity contrast but similar 
initial geometry (Fig. 13). 

Although the prediction of material properties is quite 
good, there is a consistent discrepancy in shape between 
theoretical prediction and the observed fold geometry,  
particularly for the broader  initial perturbations: the 
experimental folds are displaced downwards when com- 
pared to the theoretical curves (e.g. Fig. 11). This may 
be a finite shape effect, not considered in the theoretical 
analysis. The initial introduced perturbation shape is not 
symmetric about the plane of the layer. It protrudes only 
to one side of the layer (Figs. 10a, 11a and 12a). During 
deformation,  this antiform amplifies and protrudes still 
further into the adjacent matrix. In constant volume 
experiments, however,  the volume of matrix to either 
side of the layer remains unchanged during defor- 
mation, and the indentation of the central antiform into 

the matrix to one side must be compensated. The small 
flanking synforms are insufficient to provide this com- 
pensation, so that the layer as a whole is depressed 
downwards in a broad synformal depression about the 
central antiform, as is clearly seen in Figs. 11(b) & (c) 
and Fig. 12(b). This effect is strongest for the broader  
perturbations (Pert B and Pert  C) because they displace 
more matrix as they develop than does the narrow 
perturbation (Pert A). If this effect was eliminated, the 
degree of fit between experimental folds and theoreti- 
cally developed folds would be very good. 

CONCLUSIONS 

The experiments verify that, for low fold amplitudes 
and correspondingly low limb dips, where the assump- 
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Fig. 14. Influence of initial perturbation shape on the sensitivity of 
fold shape to the stress exponent of the layer. (a) Theoretical growth 
rate curves, derived from equation (1), for a fixed viscosity ratio of 30 
and stress exponent of the matrix 3.8, but for various values of the 
stress exponent of the layer. (b) Fourier cosine coefficients for an 
initial bell-shaped curve with average wavelength 8 times layer thick- 
ness. (c) Fourier cosine coefficients for an initial bell-shaped curve 

with average wavelength 32 times layer thickness. 

tions of the infinitesimal fold theories are acceptable, the 
fit between current non-linear fold theories and experi- 
mental observation is good. The results presented here 
should be considered as a preliminary study which 
demonstrate the potential of the methods employed. 
Further experiments are required over a greater range of 
viscosity ratios and power law exponents, and with 
analogue materials which flow in steady-state, to more 
exhaustively test the non-linear fold theories and their 
extrapolation to small but finite fold amplitudes. The 
method of Fourier analysis used here is potentially very 
powerful, in that a range of growth rates for different 
wavelengths can be determined in a single experiment, 
whereas experimental studies of sinusoidal folds (e.g. 
Neurath & Smith 1982) can only determine a single 
growth rate for one specific wavelength. The assumption 
in such an approach, namely the superposition principle 
of independent Fourier components, is intrinsic to the 
fold theories themselves, and can be tested directly from 
the linearity of plots of the logarithm of the Fourier 
coefficients vs logarithmic strain (e.g. Fig. 7). Unfortu- 
nately, for non-sinusoidal natural folds (the common 
situation, cf. plate 1 from Sherwin & Chapple 1968), the 
amplitude of the fold hinge does not correspond to the 
amplitude of any particular wavelength component, but 
represents a superposition of the amplified components 
from the initial perturbations (see also Part I, Abbassi & 
Mancktelow 1992). As the exact shape of the initial 
natural perturbation is unknown and only the final fold 
shape is available for analysis, neither the progressive 
Fourier analysis nor the best-fit fold shape analysis can 
be directly applied to determine material properties in 
natural folds. Accurately scaled analogue model experi- 
ments, which permit a detailed analysis of fold geometry 
during progressive deformation, help provide a basic 
understanding of the processes of buckle fold formation, 
which can be qualitatively applied to natural examples. 
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APPENDIX 
Fourier analysis 

Consider a real, single-valued sequence of N data values {yi }, for j = 
0,1 . . . .  N - 1, with N even, which is sampled at discrete, equally 
spaced values ofx = jA, where A is the sampling interval. The Fourier 
cosine and sine coefficients, respectively, can be represented as 

N - - I  
~ 2 I ' 9 - - ; I . \  2~jk N 

y, cosl~P-)fork=O,1 . . . . . .  
i=o 

N - 1  

b k = ~ Z y ] s i n  fork = 1,2 . . . . . .  ~ - - 1 .  
j=0 

The original sequence of data can be recovered by the inverse 
relationship 

a o N~IF [2:tjk\ (~JNk))+aN/2 yy=T+ ~, [a, cost--~-- ] + b, sin 2 

forj = 0,1 . . . . . .  N - 1 
(e.g. Singleton 1967, Hamming, 1962). 
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The discrete data set has effectively been mapped (i.e. scaled) 
into the range 0-2a and represented by a series of sine and cosine 
harmonics. This can be readily seen by considering the term 
within the brackets of the periodic cosine and sine functions in the 
above equations, namely (2njk lN) .  Now, for a constant sampling 
interval A, 

J - = J A  = X / f o r j = O , 1  . . . . .  N - I  
N NA xN 

and therefore, 

N \ x N /  = Ikx/' 

where lk = the wavenumber = (2~/Lk) ,  and Lk is the wave- 
length. 

Thus, 
2.7r 2~k 

lk Lk xN 

and Lk = x~clk, where k = 0,I . . . .  N/2 for the cosine coefficients, and 
k = 1,2 . . . . .  N/2 - 1 for the sine coefficients. 

It also follows that 

/k+l - lk -- 2a(k  + 1) 2~(k) _ 2at. 
XN XN XN 

In other words, the Fourier components always represent an integer 
number of wavelengths within the range of x (x = 0 . . .  xtv), and the 
discrete interval in the wavenumber of each of these components is 
given by 2.,~/xN. This observation is important: the size of the discrete 
steps in the wavenumber ultimately limits the resolution with which 
the growth rate curve for experimental folds can be determined (e.g. 
Fig. 8). The size of the discrete steps is entirely dependent on the 
length (xjv) of the layer which is digitized from the experiments. It 
cannot be improved, for example, by decreasing the size of the 
sampling interval A. 


